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The interstitial space in a cluster of spheres is examined to determine the largest sphere that can be placed 
in its voids. A method is given for obtaining the interstitial sphere belonging to a group of arbitrarily ar- 
ranged spheres by examining tetrahedral configurations. Given the coordinates of the centers and the radii 
of the spheres of a tetrahedral group, the coordinates and radius of the tetrahedral interstitial sphere can 
be found. The method can be applied to interstices of any coordination number. It is applicable to sphere 
packings with or without crystallographic symmetry. 

The packing of hard spheres is often used as a model in 
analyses of crystalline structure, molecular structure, aera- 
tion beds, and other structures. Such models reveal an in- 
teresting interstitial space whose geometry is amenable to 
further sphere packing - and so on, ad infinitum. The inter- 
stitial space can be examined from tetrahedral groups of 
'defining' spheres - spheres that bound the interstice. 

In this note an exact solution is given for the problem 
of calculating the size and location of an interstial sphere 
that can be inscribed in a tetrahedral group of non-co- 
planar spheres. 

In a recent paper Mackay (1973) presented a generaliza- 
tion of the problem to a four-space simplex in the form of 
a determinant. He suggests that an approximate solution 
to the interstitial-sphere radius can be obtained by an itera- 
tive solution (pivotal convergence) of his determinant. Some 
years ago we derived an exact solution for this problem 
which we have used in various analyses of crystallographic 
structures. We developed a generalized computer program 
for examining the 14 Bravais lattices and the 230 space 
groups and use a preferred-orientation solution for ease in 
desk-type calculations. Exact solutions are obtained for the 
radius R~ of an interstitial sphere and for the coordinates 
of its center (x¢,y~,zc). A brief summary of our analysis 
follows. 

The analysis is based on finding the largest sphere that 
can be placed within a given region of interstitial space 
without overlapping the bounding spheres. In essence this 
is a three-dimensional formulation of the famous problem 
of Apolloniust  (see for example, Courant & Robbins, 
1941). However, in the case of finding a sphere that is 
tangent to four given spheres, there will not necessarily be 
a solution for every arbitrarily arranged group. The exis- 
tence of an interstial-sphere solution for an arbitrary defin- 
ing group is characterized by positive definite roots in the 
interstitial equation. In geometries where more than four 
spheres may be tangent simultaneously to their interstitial 
sphere, any four non-eoplanar members of this group con- 
stitute a defining tetrahedral group. This point is a useful 
aid when examining higher-order coordination groups. 

In a tetrahedral group of non-coplanar spheres there are 
four points of tangency to their common interstitial sphere 
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(if one exists). These points lie on four lines joining the 
centers of the spheres in the tetrahedral group with the 
center of their common interstitial sphere. If  the coor- 
dinates and radii of the defining group are given by xt,yi, zi 
and Rt and corresponding values for the interstitial sphere 
are given by x~,y~,z~, and R~ then the latter are defined by 
the simultaneous solution of four distance equations of the 
form: 

(xl - xc) 2 + (Yi -Yc)  2 + (zi - zc) 2 = (Rt + R~) 2 (1) 

where i=0 ,1 ,2 ,  3. The sum of the radii is used to define 
'external' tangency, meaning that no overlap occurs be- 
tween the interstitial sphere and the defining group. 

The solutions to equations (1) can be expressed exactly 
as follows: 

E F G H 
x o = ~ + - ~ R c ,  y c = ~ +  D Ro, 

P Q 
z~= -D + b-Ro, 

and 

where 

( vT)l,2] 
Re= ~ 1-t- 1 -  ~ -  , 

(2) 

R3 h=nho 
(s*t 

Ro " 
Rz 

Fig. 1. The tetrahedron formed by the centres of the defining 
spheres in a configuration. 
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T= + + - 1 ,  

 :(x0 +(z0 2)- 

V= (Xo- D - ) 2 +  ( Y o - - G - ) 2 +  (Zo- p ) 2 - R Z ,  

and D, E, F, G, H, P, and Q are determinants. 
The determinant D is defined as 

Xo -- x~ Xo -- x2 Xo -- x a 
D = Yo - Yl Y o -  Y2 Yo - Ya 

Z 0 ~ Z 1 ZO ~ Z 2 ZO - -  Z 3 

from which the other determinates can be obtained. The 
absolute value of  D is six times the volume of the tetra- 
hedron whose vertices are located at the points whose 
coordinates are given in D (e.g., Olmsted, 1947). A real 
solution to the interstitial problem requires that D ¢ 0. To 
obtain the other determinants, first set 

2 2 2 2 C l = x l + y t + z i  ( i = 0 , 1 , 2 , 3 ) ,  
and 

A j  C 2 -  2 2 2 = C s + R j - R o  ( j =  1 ,2 ,3) .  

Then 2E, 2G, or 2P may be obtained by replacing respec- 
tively the first, second, or third rows of D with the 
row [A,B,C], where A - A t ,  B = A 2 ,  and C-=A3. Sim- 
ilarly, F, H, and Q are obtained using the row [ (Rt-R0) ,  
(R2-R0),  (R3-Ro)] to replace respectively the first second, 
and third rows of D. 

A useful simplification of the above equations results 
when a preferred orientation of the defining tetrahedron is 
selected, namely R0(0,0,0), Rl(xt, 0, 0), R2(x2,Y2,0), and 
Ra(x3,y3,z3). When applied to a defining group of equal 
radii spheres (R0= RI = R2= R3), a common problem, we 
find that F = H = Q = 0  so that T = - I ,  U=Ro, D =  
--xIY2Z3, and V=(xt /2)2-k(G/O)2-k(p/D)  2 which is also 

2 2 2 =xc+y~+z~ .  The interstitial sphere is characterized by 
x~ = xl/2, y~ = G/D, Zc = P]D and R~ = 1/' V -  Ro. A solution 
exists if V> R 2 which requires that (x~/2)2 + (G[D)2+ (P/D) 2 
> R 2. Since [x~/2[ is always greater than Ro in hard-sphere 
packing there always exists a uniquely defined interstitial 
sphere for  a non-eoplanar tetrahedral group o f  equal-radii 
spheres no matter how they may be arranged in space. 

Some useful results of the above analysis applied to a 
group of equal radii spheres are summarized below: Four  
parameters are used to specify the configuration of the 

defining group, see Fig. 1. In each configuration the base 
of the tetrahedron is equilateral. Relative to this base; 
(1) the altitude of the tetrahedron is h =  nho, where h0 is 
the altitude when the apex sphere (R3) is in contact with 
the basal spheres, (2) the separation of the basal spheres 
is sRo, and (3) the separation of the apex sphere from the 
basal spheres is ( s+  t)Ro. A fourth parameter is introduced 
when one sphere (the apex sphere) has its radius varied 
from that of R0 = R1 = R2, that is, when R3 =pRo. The first 
three parameters constitute 'packing constraints' for hard 
spheres if s >_ 0, t > 0, and r/>__ 1. Radius ratios, RdRo,  were 
found as functions of  these parameters for several cases: 
(I) Variation of r /with R0 = R1 = R2 = R3, and s =  0. 

Rc 1/z, + 11/3 __1 _ 1 . 
R o  - v 3 " l  3v2 rl 

If  r/_> 7.04 then RdRo  = 0"817r/- 1 within a 1% error. The 
radius ratio is unity, RdRo = 1, when r/= ]/-32-+ 1 or ~ 2.225. 
(II) Variation of s with R0 = RI = R2 = Ra and t = 0 

Rc 
go - W ~ - s + v ~ - I  . 

The radius ratio is unity when s= 4 ] / $ -  2 or ~ 1-265. 
(III) Variation of t with R0 = Rt = R2 = R3 and S = 0 

R~ (2 + t) 2 
m l  . R0 2[(2 + t) 2 - .~]1/2 

If  t > 6"23 then R J R o  = t]2 within a 1% error. The radius 
ratio is unity when t =  ]/8V~(1 + ]/'~-)- 2 or ~ 1.812. 
(IV) Variation of  s, t, and p where Ro = Rx = Rc ~ R3 =pRo. 

Rc (1 + s +  t+p)  2 - 1  + p 2 -  2p¢(1 + s +  t + p ) 2 - ½ ( 2 W s )  2 

R0 211 - p t  !/(1 + s + tsp)2-½(2 + s) -2] 

and the variation of r /with s = 0 yields 

Rc l + 3p2+r1213(l + p ) 2 - 4 ] - 6 p n [ / ( l  +p)2=-~ 

Ro 611 + p  + r/V(i +p)2±  ]l_ 
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